
www.manaraa.com

Robust Protection against Fault-Injection Attacks on Smart Cards Implementing
the Advanced Encryption Standard*

Mark Karpovsky, Fellow, IEEE, Konrad J. Kulikowski, Alexander Taubin, Senior Member, IEEE
Reliable Computing Laboratory

Department of Electrical and Computer Engineering
Boston University

8 Saint Mary’s Street, Boston, MA 02215
{markkar, konkul, taubin}@bu.edu

* This work was partially supported by the Community
Technology Fund of Boston University

Abstract

We present a method of protecting a hardware
implementation of the Advanced Encryption Standard
(AES) against a side-channel attack known as Differential
Fault Analysis attack. The method uses systematic
nonlinear (cubic) robust error detecting codes. Error-
detecting capabilities of these codes depend not just on
error patterns (as in the case of linear codes) but also on
data at the output of the device which is protected by the
code and this data is unknown to the attacker since it
depends on the secret key. In addition to this, the
proposed nonlinear (n,k)-codes reduce the fraction of
undetectable errors from 2 r− to 22 r− as compared to the
corresponding (n,k) linear code (where n-k=r and k>=r).
We also present results on a FPGA implementation of the
proposed protection scheme for AES as well as simulation
results on efficiency of the robust codes.

1. Introduction

Today’s information security engineer is faced with
the problem of building a trustworthy system from
untrustworthy components. Security experts claim that the
only workable solutions to date demand some minimal
number of trustworthy components. These trustworthy
components are relied on for ensuring overall system
security by providing services such as authentication,
encryption/decryption, cryptographic tokens and so on [1].

Security is typically provided at the level of software
(cryptographic algorithms). Traditional cryptographic
protocol designs assume that input and output messages
are available to attackers, but other information about the
keys is not available. However, during the last seven

years a new class of attacks against cryptographic devices
has become public [2]. These attacks exploit easily
accessible information like power consumption, running
time, input-output behavior under malfunctions, and can
be mounted by anyone using low-cost equipment. These
side-channel attacks amplify and evaluate leaked
information with the help of statistical methods and are
often much more powerful than classical cryptanalysis.
Examples show that a very small amount of side-channel
information is enough to completely break a cryptosystem
[3]. While many previously-known cryptanalytic attacks
can be analyzed by studying algorithms, side-channel
attacks vulnerabilities result from electrical behavior of
transistors and circuits of an implementation. This
ultimately compromises cryptography and shifts the top
priority in cryptography from the further improvement of
algorithms to the prevention of such attacks by reducing
variations in timing, power and radiation from the
hardware [4], reduction of observability of system
behavior after fault injection [5], and theoretical extension
of the current mathematical models of cryptography to the
physical setting which takes into consideration side-
channel attacks [6].

In this paper we focus on the side-channel attacks
known as Differential Fault Analysis (DFA) [2] attacks.
DFA was first proposed in 1997 by E. Biham and A.
Shamir [7] as an attack on DES. The attacks have since
been applied to AES by others [8,9,10,11]. DFA attacks
are based on deriving information about the secret key by
examining the differences between a cipher resulting from
correct operation and a cipher of the same initial message
resulting from faulty operation.

Several research groups suggest concurrent error
detection procedures as a hardware countermeasure
against fault injection based cryptanalysis. Karri et al. [12]

www.manaraa.com

propose to add circuitry to perform decryption, in parallel
with the encryption (with various possible levels of
granularity) and compare them with the input value to
ensure that no error has occurred. These solutions have
different detection time latencies and hardware costs and,
in general, exhibit a large cost close to that of duplication
either in space or in time. It is clear that not all-possible
attacks have been taken into account. The conclusion of
[12] states that it is assumed that both encryption and
decryption modules are not simultaneously under attack or
faulty, that is not very realistic for example for smart card
applications.

The fault-detecting scheme for AES from [13] is based
on one-dimensional parity codes. They propose
associating one redundant parity bit with each byte of the
state matrix. It provides for detection of errors involving
an odd number of bits in a byte. Unfortunately, the
attacker can still be successful if only even number of
errors in a byte element of state matrix is injected by the
attacker .

In our design, after a DFA attack is detected the device
implementing AES disables itself. We assume that the
number of natural faults which can occur in a life span of
a device is much less than the number of faulty ciphertexts
needed for a realistic DFA attack. The disabling circuitry
can be composed of a simple counter which counts the
number of errors detected. When a predetermined
threshold is reached the device will clear the secret key
from its memory thus preventing any further attacks. This
count threshold can be adjusted depending on the
operating environment and expected life span of the
device. This method is only as effective as the error
detecting codes used. One of the most important criteria
for this method is that the error coverage of the code is as
large as possible while maintaining a reasonable hardware
overhead.
 We thus present a new class of systematic nonlinear
robust codes in Section 3 and propose a robust protection
scheme against such attacks. We will use systematic
nonlinear robust codes for detection of DFA attacks. The
proposed nonlinear robust codes can be used to extend the
error coverage of linear codes without increasing their
redundancy. The hardware overhead of this method is
less than the overhead that would be necessary if the error
coverage of the linear code was increased by increasing
the code’s redundancy. We will use stuck-at fault and bit
flip error models to justify the use of the nonlinear robust
codes.

We note that optimal nonsystematic robust codes have
been proposed in [14, 15] but these codes require rather
complicate encoding and decoding procedures, which
prohibits application of these codes for detection of DFA
attacks.

For the proposed robust codes the probability of error
detection depends not only on the error pattern (as in the
case of linear codes) but also on the data itself. If all the

data vectors and error patterns are equiprobable, then the
probability of injecting an undetectable error if the device
is protected by our robust codes is r22− versus r−2 if the
device is protected by any linear code with the same r (r is
a number of redundant bits which are added for data
protection).

For brevity, we omit the discussion of AES. The
reader may consult [16] for detailed specification. In
Section 2 we give a detailed description of the fault model
used, in Section 3 we present the systematic nonlinear
robust codes with simple encoding and decoding
procedures. Section 4 has a description of a general
architecture, which can be used to protect AES with the
presented robust codes. Section 5 has a detailed
description of a FPGA implementation of a robust
protected AES core. In Section 6 we summarize the size
and overhead statistics of our FPGA implementation.
Section 7 shows the results of our simulations on
probabilities of detecting a DFA attack, which support our
initial calculations. Finally, in Section 8 we present
advantages of using the systematic nonlinear robust codes
presented for the protection of AES versus other
countermeasures.

2. Fault model

We refer to a fault as a physical malfunction of a part
of a circuit, for example a wire being stuck-at zero, or an
output of a gate being stuck-at one. A fault is what is
directly created by an attacker. Faults can generally be
induced into a device by subjecting it to abnormal
conditions. Voltage spikes, clock glitches, extreme
temperatures, radiation, eddy currents, and light can all
cause faults. However, with all of these, with the
exception of light [17, 18], there is no control as to the
location, and type of a fault which will be induced, these
are sometimes called probabilistic attacks. An error is a
manifestation of fault at the output of the device. An error
is the difference (componentwise XOR) between the
correct and distorted outputs of the device.
 In this paper, we consider protection against a
probabilistic attack. In this type of an attack, the attacker
has little or no control as to the location or type of fault
that is injected. This attack does not necessitate chip
depackaging or specialized equipment, and as a result it is
one of the most accessible attacks. Regardless of where a
fault occurs, the fault is only meaningful to an attacker if
it manifests itself as an error at the output of the device.
 Thus detecting a fault attack is equivalent to detecting
the corresponding error in the output of the device, or in
the case of AES between each round. In addition, because
a probabilistic attack has little control over the location
and timing of the faults, and hence the errors which occur,
we further assume that the errors resulting from an attack
are uniformly distributed and remain constant for several
different text inputs.

www.manaraa.com

3. Systematic nonlinear robust codes

 Let V be a binary linear (n,k)-code with 2k≥n and
check matrix []H P I= where I is an (rxr) identity matrix
and P is an ((n-k) x k) matrix of rank n-k=r over GF(2)
[19]. Then for any message, error e is not detected iff
e∈V. As it will be shown below this linear (n,k)-code V
can be modified into a nonlinear robust systematic (n,k)-
code VC such that set E of undetected errors for VC is a

(k-r)-dimensional subspace of V (rkE −= 2 instead of k2
for V).

Theorem I
Let VC = []3{(,) (2), (2)}k rx w x GF w Px GF∈ = ∈ .

Then the set { }V VE e y e C for all y C= ⊕ ∈ ∈ of non-

detected errors for VC is a (k-r)-dimensional subspace of

V, and from the remaining rkn −− 22 errors
rkkn −−− −+ 222 11 are detected with probability 1 for any

message and 11 22 −− − kn are detected with probability
121 +−− r . (All the messages assumed to be equiprobable).

Proof:
Error),(wx ee (ex∈GF(2k), ew∈GF(2r)) is not detected for

message []),(3Pxx from VC iff:

[] []3 3()x wP x e Px e⊕ = ⊕ (1)

 (All computations in (1) are in (2)rGF)
or

[] [] [][] []2 2 3 0x x x wPx Pe Px Pe Pe e⊕ ⊕ ⊕ = (2)

It follows from (2) that),(wx eee = is not detected for
any x iff 0== wx ePe , and }0),{(=== wxwx ePeeeE is

a (k-r)-dimensional subspace in }),{(PxwwxV == .

If 0=xPe and 0≠we , then),(wx ee is detected by

VC for any x. There are
rkkN −−= 221 (3)

errors satisfying this condition.
For any given),(wx ee such that 0≠xPe quadratic

equation (2) has 2 solutions for Px iff

[] [] []3 3 3(() (1) () 0x w x wTr Pe Px e Tr Tr Pe e− −⊕ = ⊕ = (4)
and has 0 solutions iff

[] 3(1) () 1x wTr Tr Pe e−⊕ = (5)

where)(yTr is the trace of y in)2(rGF [19].
 Since out of kn 22 − errors),(wx eee = such that

0≠xPe

11
2 22 −− −= knN (6)

satisfy (4), we have from (3) and (5) for a number, N, of
errors which are detected for any x

rkknNNN −−− −+=+= 222 11
21 .

Finally, the remaining 11 22 −− − kn errors satisfying (4)
are detected with probability 121 +−− r . □

Table 1. Comparison of the proposed robust

codes and corresponding linear codes

ROBUST
NONLINEAR

LINEAR
NOT

ROBUST
Number of undetectable
errors.

rk−2 k2
Number of errors detected
with probability of 1

rkkn −−− −+ 222 11

 2 2n k−
Number of errors detected
with probability

121 +−− r

11 22 −− − kn 0

The transition from linear code V to the corresponding

non-linear code VC requires only addition of two cubic
networks. Each cubic network increases the complexity
of encoding and decoding by)(2rO . Thus replacing
linear (n,k) code (2/nk ≥) by a cubic robust code with
the same parameters results in a reduction of the size of
the space of undetected errors from k2 to 22 2k r n r− −= .
The properties of the proposed robust codes versus linear
are summarized in Table 1.

In the above theorem and proof we had chosen a cubic
network as the nonlinear function. We note that a square
in the respective field would not work. Other functions
are also possible. One alternative is to use a multiplicative
inverse in)2(rGF or taking a higher power. The
alternative nonlinear functions result in a larger hardware
overhead or reduced error coverage. Thus, the cubic
function was preferred since it is in general of a lower
complexity and a results in higher error coverage.

4. General architecture

Robust codes can be used to extend the error coverage
of any linear prediction scheme for AES. Only two extra
cubic networks are needed, one in the extended device,
and one in the Error Detection Network (EDN). The
architecture of AES with robust protection is presented in
Figure 1.

In the architecture in Figure 1 a single linear predictor
is assumed for the encryptor, decryptor, and key
expansion. The same architecture can be extended to
architectures, which would have separate linear predictors
for all the devices. (Note that in this context a linear
predictor is such that it generates a signature, which is a
linear combination of the outputs of the round. It does not

www.manaraa.com

mean that the predictor contains only linear elements. It
could in fact contain nonlinear elements just as long as its
output is linear with respect to the output of the round.) It
is the r-bit signature of the linear predictor, which is cubed
in)2(rGF to produce an r-bit output, which is nonlinear
with respect to the output of the round.

Figure 1. Robust architecture for one round of

AES.

For the robust architecture we have designed a linear
predictor which can be used to generate a rL=32-bit
signature. The proposed linear predictor offers a
relatively compact design, which allows for easy hardware
sharing for encryption and decryption prediction. The
single predictor is designed so that it protects the
encryptor/decryptor as well as key-expansion. The
complete design of the linear predictor can be found in the
next section.

5. Detailed design of the linear predictor

The output of the linear predictor is linearly related to
the output of the round of AES (see Figure 2).
Specifically, each byte of the linear predictor’s output

'()L j is equivalent to the componentwise XOR of four
bytes of the output of a round (see Figure 3 for summary
of the notations used):

 In this method the function of each byte of '()L j no
longer contains the MixColumns transformation [16]. As
a result, the linear predictor is greatly simplified since it
no longer needs to perform multiplications associated with
the MixColumns/InvMixColumns (see [16]). The details
of the simplification are listed below.

Figure 2. Relation of the output of the Linear

Predictor L’(j) to the output of a round of AES,
Out(i,j).

Figure 3. Notations used.

In the design presented in Figure 3 the complete linear

predictor is actually the two components: Linear
Predictor, and the Linear Compressor K.
 The output of the linear predictor, '()L j , is a 4-byte
word which is linearly related to the output of one round

(0,0) (0,1) (0, 2) (0,3)
(1,0) (1,1) (1, 2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3, 2) (3,3)

Out Out Out Out
Out Out Out Out
Out Out Out Out
Out Out Out Out⊕

'(0) '(1) '(2) '(3)L L L L

www.manaraa.com

of AES. The function of '()L j with respect to Out(i,j)
can be written as:
 3 3

0 0
'() (,) ((,) (,))

i i
L j Out i j RK i j ED i j

= =
= = ⊕⊕ ⊕ (7)

where }3,2,1,0{∈j

If 3

0
'() (,)RK i

L j RK i j
=

=⊕ and 3

0
' () (,)ED i

L j ED i j
=

=⊕

where }3,2,1,0{∈j ,
then)(')(')(' jLjLjL EDRK ⊕= where }3,2,1,0{∈j

Thus, for the AES standard the following expression
can be obtained for encryption:

'(0) {01} ((0,0)) {03} ((1,0))
 ((2,0)) ((3,0)) ((0,0))

EDL Sub In Sub In
Sub In Sub In Sub In

= • ⊕ • ⊕
⊕ ⊕ ⊕

 {02} ((1,0)) {03} ((2,0))
 ((3,0)) ((0,0)) ((1,0))

Sub In Sub In
Sub In Sub In Sub In

• ⊕ • ⊕
⊕ ⊕

 {02} ((2,0)) {03} ((3,0))Sub In Sub In⊕ • ⊕ • ⊕
 {03} ((0,0)) ((1,0))
 ((2,0)) {02} ((3,0))

Sub In Sub In
Sub In Sub In

• ⊕ ⊕
⊕ •

 ((0,0)) ((1,0)) ((2,0))
 ((3,0))

Sub In Sub In Sub In
Sub In

= ⊕ ⊕
⊕

where • is multiplication in)2(8GF and)),((jiInSub is
the SubBytes transformation on the byte),(jiIn as
defined in the AES standard [16].

Since:

1((,)) ((,))Sub In i j M In i j c−= ⊕ ,

where M=

































11111000
01111100
00111110
00011111
10001111
11000111
11100011
11110001

, c=

































0
1
1
0
0
0
1
1

and inverse is in GF(28).

This further simplifies)0('EDL :

))3,3()2,2()1,1()0,0(()0(' 1111 −−−− ⊕⊕⊕= InInInInMLED (8)

Similarly,

where Rcon[i] is the Round Constant used in Key
Expansion as defined in [16].

Combining (7), (8) and (9) results in:

1 1 1 1

1 1 1 1

'(0) ((0,0) (1,1) (2, 2) (3,3))
 ((0,3) (1,3) (2,3) (3,3))
 (0,0) (1,0) (2,0) (3,0) []

L M In In In In
M KI KI KI KI
KI KI KI KI Rcon i

− − − −

− − − −

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕

Extending the procedure to the rest of the bytes of
encryption yields:

))0,3()3,2()2,1()1,0(()1(' 1111 −−−− ⊕⊕⊕= InInInInMLED

))1,3()0,2()3,1()2,0(()2(' 1111 −−−− ⊕⊕⊕= InInInInMLED

))2,3()1,2()0,1()3,0(()3(' 1111 −−−− ⊕⊕⊕= InInInInMLED

)1,3()1,2()1,1()1,0()0(')1(' KIKIKIKILL RKRK ⊕⊕⊕⊕=
)2,3()2,2()2,1()2,0()1(')2(' KIKIKIKILL RKRK ⊕⊕⊕⊕=
)3,3()3,2()3,1()3,0()2(')3(' KIKIKIKILL RKRK ⊕⊕⊕⊕=

Similarly for decryption:

1 1

1 1

'(0) (((0,0))) (((1,3)))

 (((2, 2))) (((3,1)))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕
1 1

1 1

'(1) (((0,1))) (((1,0)))

 (((2,3))) (((3, 2)))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕
1 1

1 1

'(2) (((0,2))) (((1,1)))

 (((2,0))) (((3,3)))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕
1 1

1 1

'(3) (((0,3))) (((1,2)))

 (((2,1))) (((3,0)))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

1 1

1 1

'(0) (((0, 2) (0,3)) ((1, 2) (1,3))

 ((2,2) (2,3)) ((3, 2) (3,3)))
 []

RKL M KI KI KI KI

KI KI KI KI
Rcon i

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

'(1) (0,0) (1,0) (2,0) (3,0) (0,1)
 (1,1) (2,1) (3,1)

RKL KI KI KI KI KI
KI KI KI

= ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕

'(2) (0,1) (1,1) (2,1) (3,1) (0,2)
 (1, 2) (2,2) (3,2)

RKL KI KI KI KI KI
KI KI KI

= ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕

'(3) (0,2) (1,2) (2,2) (3,2) (0,3)
 (1,3) (2,3) (3,3)

RKL KI KI KI KI KI
KI KI KI

= ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕

where Minv is the inverse in (2)GF of the matrix M
defined above.

If the redundancy, and hence the size r of the cubic
signature, is chosen such that it is smaller or equal than
the output of the linear predictor rL (rL≤ 32), then the
output of the linear predictor has to be first compressed
before it is cubed. In the proposed design this is the role
of the Compressor K. This compressor could be
implementing multiplication over GF(2) by any (rL x r)
matrix with rank r.

The above design results in a linear predictor which
protects the encryptor, decryptor and key expansion with

1 1 1

1

' (0) ((0,3) (1,3) (2,3)

 (3,3)) (0,0) (1,0)
 (2,0) (3,0) []

RKL M KI KI KI

KI KI KI
KI KI Rcon i

− − −

−

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕
⊕ ⊕

(9)

www.manaraa.com

TABLE 2. FPGA implementations of robust cubic AES

only about a 50% hardware overhead in a FPGA
implementation when compared to the unprotected design.

6. FPGA implementations

 We have implemented AES-128 (AES with 128-bit
key) on a Xilinx XCV1000E FPGA using Xilinx
Foundation 5.2 tools. The design included
encryption/decryption capability with dynamic key
expansion for both encryption and decryption. A simple
control unit was implemented to control the whole circuit.
That design was then protected by the proposed robust
codes with different lengths of cubic signatures r. The
required overheads are summarized in Table 2. Table 2
represents the relative size and speed of the circuit in post
synthesis estimations only (not after place and route).

From the cube size column in Table 2 it is evident that
the complexity of the network computing cubic signatures
does not have uniform)(2rO growth behavior (even
though the sizes are presented in slices, the same
characteristic would still be evident for the corresponding
gate-counts). In some instances it is absent such as in the
cubes where r=24 and r=28. In that case, the larger r
corresponds to a smaller complexity of the cubic network.
This abnormality is a result of the selection of primitive
polynomials of degree r defining GF(2r) for each r. The
size and the complexity of the cubic network are largely
dependent on the characteristics of the primitive
polynomial. In general, less terms in the polynomial are
and smaller the degree of the non-leading term the better.
These polynomial characteristics also explain the large
cost of the 32-bit cubic network. The best primitive
polynomial for the 32-bit case is relatively bad since it has
5 terms and it has a large order term (22x).

Based on the results in Table II, we had chosen
an r=28 for out test FPGA design. We felt that the r=28

case provided the best area to error protection
compromise.

Table 3. Relative sizes of components for robust

cubic architectures.

CONT
ROL

AES
ENC/DEC

KEY
EXPANSIO

N CORE

LINEAR
PREDIC

TOR
28 BIT
CUBE

EDN
WITH 28

BIT
CUBE

SIZE
(SLICES) 31 2,201 1,000 349 404
RELATI
VE SIZE

%
0.7 % 55.3 % 25 % 8.8 % 10.2 %

Table 3 represents the relative size of each component

in the design where r=28.

7. Simulation results

The error coverage of the robust protection scheme
with r=28 was simulated and compared to the error
coverage of the corresponding linear protection scheme
with the same redundancy. The 28-bit signature was then
calculated from the 128-bit random input. In the robust
simulation the signature was additionally cubed to
produce the 156-bit extended output of the device (see
Figure 4). It was in the extended 156-bit output that an
error was injected. The same random inputs and the same
error patterns were injected into the linear and robust
cubic architectures. For each error pattern injected, five
random inputs were simulated.

The results for random uniformly distributed
symmetrical error pattern (componentwise XOR) injection
are presented in Table 4.

SIZE OF THE
CUBIC

SIGNATURE
r

PRIMITIVE
POLYNOMIAL

CUBE
SIZE

(SLICES)

TOTAL
SIZE

(SLICES)

AREAD
OVERHEA

D (%)
FREQ.
(MHz)

THROUG
HPUT
(Mb/s)

SPEED
OVERHEA

D (%)

PROB. OF AN
UNDETECTABLE

ERROR *
0 - - 2,253 0 19.67 228 -

8 1348 ++++ xxxx 28 3,362 49 15.92 185 19 162−

16 123516 ++++ xxxx 150 3,595 59 15.41 179 21 322−

20 11720 ++xx 202 3,683 63 15.21 177 22 402−

24 12724 ++++ xxxx 368 4,015 78 14.91 173 24 482−

28 1328 ++xx 349 3,996 77 17.02 198 13 562−

29 1229 ++xx 359 4,000 77 16.13 187 18 582−

31 1331 ++xx 452 4,133 83 16.76 195 14 622−

32 122232 ++++ xxxx 747 4,756 111 15.72 182 20 642−
* Estimated, based on Table 1. Assumes all errors at the extended output are equiprobable.

www.manaraa.com

Figure 4 . Bit flip error model simulation test

benches (a) linear; (b) robust cubic.

Table 4. Results of the injection of symmetrical

errors

ERROR PATTERNS
INJECTED

ERRORS MISSED
AFTER 5

RANDOM INPUTS
LINEAR
PROTECTION

29.7 billion 118
ROBUST CUBIC
PROTECTION

29.7 billion 0

Results in Table 4 support our calculations (see Table

1). As expected, for symmetrical errors the probability of
an undetectable error in the linear error detection scheme
is r−2 and much less in the robust case (calculated to be

r22− , hence no missed errors).
 Similarly, random unidirectional (1 to 0 only) errors
were injected at the extended output. The results of the
simulation are presented in Table 5.

Table 5. Results of the injection of unidirectional

errors

ERROR
PATTERNS
INJECTED

ERRORS
MISSED AFTER

1 RANDOM
INPUT

ERRORS
MISSED AFTER

2 RANDOM
INPUTS

LINEAR
PROTECTION

12.2 billion 160 0

ROBUST
CUBIC
PROTECTION

12.2 billion 43 0

 The manifestation of unidirectional errors is data
dependant. Thus, even the linear code exhibited some
robust behavior. The data dependant error detection
property of the linear code in the case of unidirectional
errors caused the linear protection to be more closely
matched to the robust protection (Table 5).
 Errors, which were missed by the linear architecture,
were also considered. In this simulation random 128-bit
errors in information bits were generated. The 28
additional redundant error pattern bits were generated in
such a way that the error pattern itself was a codeword of
the corresponding (156,128) linear code. The results of
the simulation are presented in Table 6.

The simulation results presented in Tables 4, 5 and 6
support the estimations for robust codes presented in
Section 2. The simulation results support the claim that
the number of undetectable errors for robust codes is
considerably lower than that of the linear counterparts.

Table 6. Protection against errors missed by
linear architecture

ERROR

PATTERNS
INJECTED

ERRORS
MISSED AFTER

1 RANDOM
INPUT

ERRORS
MISSED AFTER

5 RANDOM
INPUTS

LINEAR
PROTECTION

28.1
billion 28.1 billion 28.1 billion

ROBUST
CUBIC
PROTECTION

28.1
billion 157 84

8. Advantages of proposed robust
architecture and future tasks

 When attempting to protect a device against naturally
occurring faults, assumptions and statistical analyses are
made to determine the most probable errors. With natural
errors in devices and communication channels there are
often well-defined classes of errors, which appear the vast
majority of the time. Protection schemes are then focused
on protecting against that class of errors. However,
statistical assumptions cannot, and should not be made for
devices which can be subjected to an organized fault
analysis attack. An attacker could potentially inject any
type or kind of fault. An approach should be taken to
minimize the number of total undetectable errors for such
a device as to limit an attacker’s chances of success.
 The probability of injecting an undetectable error into
a device is an important criterion to characterize a
resistance to DFA attacks. The proposed robust codes can
be used to extend the error coverage of existing linear
codes. They have a hardware cost, but their increased
error coverage advantage outweighs those costs when it
comes to DFA resistant AES applications such as smart
cards. As summarized in Table I, the number of

(a)

(b)

www.manaraa.com

undetectable errors for the robust code is r2 times smaller
than for the corresponding linear code. When the
redundancy is as large as in our example where r=28, the
difference is enormous.

In our robust design we had chosen an r=28. With the
introduction of the nonlinear cubic we reduced the
fraction of undetectable errors from 282− to 562− without
increasing the redundancy r of the original linear code and
with relatively small hardware overhead (75% over
unprotected AES). To achieve the same probability of

562− with linear codes only, the redundancy r would need
to be extended to 56 bits. A linear predictor which can
generate r=56 bit signatures would result in duplication of
hardware. Thus, the robust nonlinear codes allow larger
error coverage at a lower cost.

It is become clear now that tamper-resistance must be
integral and a countermeasure against one physical attack
must not benefit another attack [20]. The AES algorithm
does not contain arithmetic operations, only table lookups,
bitwise “XOR”, and fixed byte rotation. Thus, AES is not
particularly susceptible to leaking information during
cryptographic operations through power and
electromagnetic side-channels. Of course, now that new
more effective attacks (e.g. [8, 21]) have been developed
it is become clear that the algorithm itself can’t be safe
enough against all possible attacks and any reliable
implementation must be done with reasonable
countermeasures to side-channel attacks. However, it is
still very important to preserve good properties of AES
related to resistance against power and timing analysis
attacks when one is suggesting a countermeasure to fault
injection based attacks. Error detection procedures should
be based on the same finite field operations as the AES
algorithm, the proposed robust protection satisfy this
criterion.

Our future research will combine protection against
fault-injection with countermeasures against power and
timing analysis attacks. There are two relatively new
approaches that are fighting with the sources of data-
dependent variations of power, timing and erroneous
behavior [22, 23]. The first makes power consumption
almost data-independent by balancing the capacitive loads
of differential nodes. The second uses self-timed circuits
with dual-rail logic to resist power analysis and single-
point fault induction. These approaches (combined with
methods proposed in [23] and [22]) seem to be very
attractive countermeasure against power-analysis attacks.
Self-timed circuitry because of absence of clocks makes
glitch attack practically impossible. However, dual-rail
encoding with alarm state from [23] is effective only for a
limited class of induced errors (a single point fault
induction, i.e. affecting only one wire). It is rather easy to
imagine an attacker that can modify symmetrically both
wires from dual-rail pair using e.g. attack from [17,18].
Such error induction will not be visible for the alarm

generators from [23]. More developed error detection
techniques, such as robust protection, need to be used.
Other weaknesses of “classical” self-timed
implementations [23] discovered in [18] could be
effectively dealt with by asynchronous fine-grain
multidimensional pipelined structures [24]. We are now
starting development of robust asynchronous fine-grain
pipelined implementations of AES using EDA tools under
development in Boston University.

References:

[1] C.E. Landwehr, Computer Security. International Journal of

Information Security (2001) 1: 3-13.
[2] E. Hess, N. Janssen, B. Meyer, and T. Schütze Information

Leakage Attacks Against Smart Card Implementations of
Cryptographic Algorithms and Countermeasures - A Survey.
Proceedings of EUROSMART Security Conference, 2000

[3] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, Side Channel
Cryptanalysis of Product Ciphers, ESORICS '98
Proceedings, 1998, pp. 97-110.

[4] C. D. Walter, Montgomery’s Multiplication Technique: How
to make it Smaller and Faster, Proc. Workshop on
Cryptographic Hardware and Embedded Systems, (CHES
99), 1999, Lecture Notes in Computer Science, vol. 1717, pp
80-93.

[5] M.Joye, J.-J.Quisquater, S.-M. Yen and M.Yung
Observability Analysis - Detecting when Improved
Cryptosystems Fail. Topic in Cryptology –CT-RSA 2002,
vol. 2271 in Lecture Notes in Computer Science, pp 17-29.

[6] S. Micali and L. Reyzin, Physically Observable
Cryptography, Cryptology ePrint Archive of IACR, No. 120,
2003, available at http://eprint.iacr.org/2003/120

[7] E. Biham and A. Shamir, Differential fault analysis of
secret key cryptosystems, CRYPTO 97, LNCS 1294, pp.513-
525

[8] C.N. Chen and S.-M.Yen, Differential Fault Analysis on
AES Key Schedule and Some Countermeasures, ACISP
2003, LNCS 2727, pp.118-129, 2003

[9] P. Dusart, G. Letourneux, O. Vivolo, Differential Fault
Analysis on AES, Cryptology ePrint Archive, Report
2003/010. Available: http://eprint.iacr.org/2003/010.pdf

[10]C. Giraud. DFA on AES. Cryptology ePrint Archive, Report
2003/008. Available:
http://eprint.iacr.org and
http://citeseer.nj.nec.com/558158.html

[11]J. Blomer and J.P. Seifert, Fault based cryptanalysis of the
advanced encryption standard (AES), Cryptology ePrint
Archive: Report 2002/075. Available at:
http://eprint.iacr.org.

[12]Ramesh Karri, Kaijie Wu, Piyush Mishra, Yongkook Kim,
Concurrent Error Detection of Fault Based Side-Channel
Cryptanalysis of 128-Bit Symmetric Block Ciphers. IEEE
Transactions on COMPUTER-AIDED DESIGN of
Integrated Circuits and Systems, Vol.21, No.12, pp. 1509-
1517, 2002

[13]G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri,
Error Analysis and Detection Procedures for a Hardware
Implementation of the Advanced Encryption Standard, IEEE
Transactions on Computers, VOL. 52, NO. 4, 2003

[14]M. G. Karpovsky, P. Nagvajara, "Optimal Robust

www.manaraa.com

Compression of Test Responses," IEEE Trans. on
Computers, Vol. 39, No. 1, pp. 138-141, January 1990.

[15]M. G. Karpovsky, P. Nagvajara, "Optimal Codes for the
Minimax Criterion on Error Detection," IEEE Trans. on
Information Theory, November 1989.

[16]FIPS PUB 197: Advanced Encryption Standard,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[17]S. Skorobogatov and R. Anderson. Optical Fault Induction
Attacks. IEEE Symposium on Security and Privacy, May
2002.

[18]J.J.A. Fournier, S. Moore, H.Li, R. Mullins, and G. Taylor.
Security Evaluation of Asynchronous Circuits. Proc.
Workshop on Cryptographic Hardware and Embedded
Systems, (CHES 2003).

[19] F.J. McWilliams and N.J.A. Sloane, The Theory of Error-
Correcting Codes, North Holland, 1978

[20]S.-M.Yen, S.Kim, S.Lim and S.Moon A Countermeasure
against One Physical Cryptanalysis May Benefit Another
Attack: ICICS 2001, LNCS 2288, pp. 414-427

[21]S.-M.Yen Amplified differential power cryptanalysis of
some enhanced Rijndael implementations. ACISP 2003,
LNCS 2727, pp.106-117, 2003

[22]Kris Tiri, Moonmoon Akmal, Ingrid Verbauwhede, "A
Dynamic and Differential CMOS Logic with Signal
Independent Power Consumption to Withstand Differential
Power Analysis on Smart Cards", 28th European Solid-State
Circuits Conference (ESSCIRC 2002)

[23]Simon Moore, Ross Anderson, Robert Mullins, George
Taylor, Jacques Fournier, Balanced Self-Checking
Asynchronous Logic for Smart Card Applications
Microprocessors and Microsystems, 27 (2003) pp. 421-430.

 [24]A.Taubin, K. Fant, J. McCardle Design of Delay-Insensitive
Three Dimension Pipeline Array Multiplier for Image
Processing. Proceedings, 2002 IEEE International
Conference on Computer Design: VLSI in Computers and
Processors. ICCD’2002, p.p.104-111.

