
www.manaraa.com

 

Robust Protection against Fault-Injection Attacks on Smart Cards Implementing 
the Advanced Encryption Standard* 

 
 

Mark Karpovsky, Fellow, IEEE, Konrad J. Kulikowski, Alexander Taubin, Senior Member, IEEE 
Reliable Computing Laboratory 

Department of Electrical and Computer Engineering 
Boston University 

8 Saint Mary’s Street, Boston, MA 02215 
{markkar, konkul, taubin}@bu.edu 

 
 

                                                           
* This work was partially supported by the Community  
Technology Fund of Boston University 
 

Abstract 
 

We present a method of protecting a hardware 
implementation of the Advanced Encryption Standard 
(AES) against a side-channel attack known as Differential 
Fault Analysis attack.  The method uses systematic 
nonlinear (cubic) robust error detecting codes.  Error-
detecting capabilities of these codes depend not just on 
error patterns (as in the case of linear codes) but also on 
data at the output of the device which is protected by the 
code and this data is unknown to the attacker since it 
depends on the secret key. In addition to this, the 
proposed nonlinear (n,k)-codes reduce the fraction of 
undetectable errors from 2 r− to 22 r−  as compared to the 
corresponding  (n,k) linear code (where n-k=r and k>=r).  
We also present results on a FPGA implementation of the 
proposed protection scheme for AES as well as simulation 
results on efficiency of the robust codes.   
 
 
1. Introduction 
 

Today’s information security engineer is faced with 
the problem of building a trustworthy system from 
untrustworthy components. Security experts claim that the 
only workable solutions to date demand some minimal 
number of trustworthy components. These trustworthy 
components are relied on for ensuring overall system 
security by providing services such as authentication, 
encryption/decryption, cryptographic tokens and so on [1].   

Security is typically provided at the level of software 
(cryptographic algorithms). Traditional cryptographic 
protocol designs assume that input and output messages 
are available to attackers, but other information about the 
keys is not available.  However, during the last seven 

years a new class of attacks against cryptographic devices  
has become public [2]. These attacks exploit easily 
accessible information like power consumption, running 
time, input-output behavior under malfunctions, and can 
be mounted by anyone using low-cost equipment. These 
side-channel attacks amplify and evaluate leaked 
information with the help of statistical methods and are 
often much more powerful than classical cryptanalysis. 
Examples show that a very small amount of side-channel 
information is enough to completely break a cryptosystem 
[3]. While many previously-known cryptanalytic attacks 
can be analyzed by studying algorithms, side-channel 
attacks vulnerabilities result from electrical behavior of 
transistors and circuits of an implementation.  This 
ultimately compromises cryptography and shifts the top 
priority in cryptography from the further improvement of 
algorithms to the prevention of such attacks by reducing 
variations in timing, power and radiation from the 
hardware [4], reduction of observability of system 
behavior after fault injection [5], and theoretical extension 
of the current mathematical models of cryptography to the 
physical setting which takes into consideration side-
channel attacks [6].  

In this paper we focus on the side-channel attacks 
known as Differential Fault Analysis (DFA) [2] attacks.  
DFA was first proposed in 1997 by E. Biham and A. 
Shamir [7] as an attack on DES.   The attacks have since 
been applied to AES by others [8,9,10,11].  DFA attacks 
are based on deriving information about the secret key by 
examining the differences between a cipher resulting from 
correct operation and a cipher of the same initial message 
resulting from faulty operation.  

Several research groups suggest concurrent error 
detection procedures as a hardware countermeasure 
against fault injection based cryptanalysis. Karri et al. [12] 
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propose to add circuitry to perform decryption, in parallel 
with the encryption (with various possible levels of 
granularity) and compare them with the input value to 
ensure that no error has occurred. These solutions have 
different detection time latencies and hardware costs and, 
in general, exhibit a large cost close to that of duplication 
either in space or in time. It is clear that not all-possible 
attacks have been taken into account. The conclusion of 
[12] states that it is assumed that both encryption and 
decryption modules are not simultaneously under attack or 
faulty, that is not very realistic for example for smart card 
applications. 

The fault-detecting scheme for AES from [13] is based 
on one-dimensional parity codes. They propose 
associating one redundant parity bit with each byte of the 
state matrix. It provides for detection of errors involving 
an odd number of bits in a byte. Unfortunately, the 
attacker can still be successful if only even number of 
errors in a byte element of state matrix is injected by the 
attacker . 

In our design, after a DFA attack is detected the device 
implementing AES disables itself.   We assume that the 
number of natural faults which can occur in a life span of 
a device is much less than the number of faulty ciphertexts 
needed for a realistic DFA attack.  The disabling circuitry 
can be composed of a simple counter which counts the 
number of errors detected.  When a predetermined 
threshold is reached the device will clear the secret key 
from its memory thus preventing any further attacks.  This 
count threshold can be adjusted depending on the 
operating environment and expected life span of the 
device.  This method is only as effective as the error 
detecting codes used.  One of the most important criteria 
for this method is that the error coverage of the code is as 
large as possible while maintaining a reasonable hardware 
overhead. 
 We thus present a new class of systematic nonlinear 
robust codes in Section 3 and propose a robust protection 
scheme against such attacks. We will use systematic 
nonlinear robust codes for detection of DFA attacks.  The 
proposed nonlinear robust codes can be used to extend the 
error coverage of linear codes without increasing their 
redundancy.  The hardware overhead of this method is 
less than the overhead that would be necessary if the error 
coverage of the linear code was increased by increasing 
the code’s redundancy.  We will use stuck-at fault and bit 
flip error models to justify the use of the nonlinear robust 
codes. 

We note that optimal nonsystematic robust codes have 
been proposed in [14, 15] but these codes require rather 
complicate encoding and decoding procedures, which 
prohibits application of these codes for detection of DFA 
attacks.  

For the proposed robust codes the probability of error 
detection depends not only on the error pattern (as in the 
case of linear codes) but also on the data itself.  If all the 

data vectors and error patterns are equiprobable, then the 
probability of injecting an undetectable error if the device 
is protected by our robust codes is r22−  versus r−2  if the 
device is protected by any linear code with the same r (r is 
a number of redundant bits which are added for data 
protection). 

For brevity, we omit the discussion of AES. The 
reader may consult [16] for detailed specification. In 
Section 2 we give a detailed description of the fault model 
used, in Section 3 we present the systematic nonlinear 
robust codes with simple encoding and decoding 
procedures.  Section 4 has a description of a general 
architecture, which can be used to protect AES with the 
presented robust codes.  Section 5 has a detailed 
description of a FPGA implementation of a robust 
protected AES core.  In Section 6 we summarize the size 
and overhead statistics of our FPGA implementation.  
Section 7 shows the results of our simulations on 
probabilities of detecting a DFA attack, which support our 
initial calculations.  Finally, in Section 8 we present 
advantages of using the systematic nonlinear robust codes 
presented for the protection of AES versus other 
countermeasures. 
 
2. Fault model 
 

We refer to a fault as a physical malfunction of a part 
of a circuit, for example a wire being stuck-at zero, or an 
output of a gate being stuck-at one.  A fault is what is 
directly created by an attacker.  Faults can generally be 
induced into a device by subjecting it to abnormal 
conditions.  Voltage spikes, clock glitches, extreme 
temperatures, radiation, eddy currents, and light can all 
cause faults.  However, with all of these, with the 
exception of light [17, 18], there is no control as to the 
location, and type of a fault which will be induced, these 
are sometimes called probabilistic attacks. An error is a 
manifestation of fault at the output of the device.  An error 
is the difference (componentwise XOR) between  the 
correct and distorted outputs of the device.   
 In this paper, we consider protection against a 
probabilistic attack.  In this type of an attack, the attacker 
has little or no control as to the location or type of fault 
that is injected.  This attack does not necessitate chip 
depackaging or specialized equipment, and as a result it is 
one of the most accessible attacks.   Regardless of where a 
fault occurs, the fault is only meaningful to an attacker if 
it manifests itself as an error at the output of the device. 
 Thus detecting a fault attack is equivalent to detecting 
the corresponding  error in the output of the device, or in 
the case of AES between each round.  In addition, because 
a probabilistic attack has little control over the location 
and timing of the faults, and hence the errors which occur, 
we further assume that the errors resulting from an attack 
are uniformly distributed and remain constant for several 
different text inputs.   
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3. Systematic nonlinear robust codes 

 Let V be a binary linear (n,k)-code with 2k≥n and 
check matrix [ ]H P I= where I is an   (rxr) identity matrix 
and P is an ((n-k) x k)  matrix of rank n-k=r over GF(2)  
[19].  Then for any message, error e is not detected iff 
e∈V.  As it will be shown below this linear (n,k)-code V 
can be modified into a nonlinear robust systematic (n,k)-
code VC  such that set E of undetected errors for VC  is a 

(k-r)-dimensional subspace of V ( rkE −= 2  instead of k2  
for V). 
 
Theorem I  
Let VC = [ ]3{( , ) (2 ), (2 )}k rx w x GF w Px GF∈ = ∈ .   

Then the set { }V VE e y e C for all y C= ⊕ ∈ ∈ of non-

detected errors for VC  is a (k-r)-dimensional subspace of 

V, and from the remaining rkn −− 22  errors 
rkkn −−− −+ 222 11  are detected with probability 1 for any 

message and 11 22 −− − kn  are detected with probability 
121 +−− r . (All the messages assumed to be equiprobable). 

 
Proof: 
Error ),( wx ee  (ex∈GF(2k), ew∈GF(2r)) is not detected for 

message [ ] ),( 3Pxx  from  VC  iff: 

[ ] [ ]3 3( )x wP x e Px e⊕ = ⊕        (1) 

     (All computations in (1) are in (2 )rGF ) 
or 

[ ] [ ] [ ][ ] [ ]2 2 3 0x x x wPx Pe Px Pe Pe e⊕ ⊕ ⊕ =   (2) 
 

It follows from (2) that ),( wx eee =  is not detected for 
any x iff 0== wx ePe , and }0),{( === wxwx ePeeeE  is 

a (k-r)-dimensional subspace in }),{( PxwwxV == . 

If 0=xPe  and 0≠we , then ),( wx ee  is detected by 

VC  for any x. There are 
rkkN −−= 221           (3) 

errors satisfying this condition. 
For any given ),( wx ee  such that 0≠xPe  quadratic 

equation (2) has 2 solutions for Px  iff  

[ ] [ ] [ ]3 3 3( ( ) (1) ( ) 0x w x wTr Pe Px e Tr Tr Pe e− −⊕ = ⊕ =  (4) 
and has 0 solutions iff 

[ ] 3(1) ( ) 1x wTr Tr Pe e−⊕ =        (5) 

where )(yTr  is the trace of y in )2( rGF  [19]. 
 Since out of kn 22 −  errors ),( wx eee =  such that 

0≠xPe  

11
2 22 −− −= knN           (6) 

satisfy (4), we have from (3) and (5) for a number, N, of 
errors which are detected for any x 

rkknNNN −−− −+=+= 222 11
21 . 

Finally, the remaining 11 22 −− − kn  errors satisfying (4) 
are detected with probability 121 +−− r .      □ 

 
Table 1. Comparison of the proposed robust 

codes and corresponding linear codes 
 

ROBUST 
NONLINEAR 

LINEAR 
NOT 

ROBUST 
Number of undetectable 
errors. 

rk−2  k2  
Number of  errors detected 
with probability of 1 

rkkn −−− −+ 222 11

 2 2n k−  
Number of errors detected 
with probability 

121 +−− r  

11 22 −− − kn  0 

 
The transition from linear code V to the corresponding 

non-linear code VC  requires only addition of two cubic 
networks.  Each cubic network increases the complexity 
of encoding and decoding by )( 2rO . Thus replacing 
linear (n,k) code ( 2/nk ≥ )  by a cubic robust code with 
the same  parameters results in a reduction of the size of 
the space of undetected errors from k2  to 22 2k r n r− −= .  
The properties of the proposed robust codes versus linear 
are summarized in Table 1.   

In the above theorem and proof we had chosen a cubic 
network as the nonlinear function.  We note that a square 
in the respective field would not work.  Other functions 
are also possible.  One alternative is to use a multiplicative 
inverse in )2( rGF  or taking a higher power.  The 
alternative nonlinear functions result in a larger hardware 
overhead or reduced error coverage.  Thus, the cubic 
function was preferred since it is in general of a lower 
complexity and a results in higher error coverage.  
 
4. General architecture 
 

Robust codes can be used to extend the error coverage 
of any linear prediction scheme for AES.  Only two extra 
cubic networks are needed, one in the extended device, 
and one in the Error Detection Network (EDN).  The 
architecture of AES with robust protection is presented in 
Figure 1. 

In the architecture in Figure 1 a single linear predictor 
is assumed for the encryptor, decryptor, and key 
expansion.  The same architecture can be extended to 
architectures, which would have separate linear predictors 
for all the devices.  (Note that in this context a linear 
predictor is such that it generates a signature, which is a 
linear combination of the outputs of the round.  It does not 
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mean that the predictor contains only linear elements.  It 
could in fact contain nonlinear elements just as long as its 
output is linear with respect to the output of the round.)  It 
is the r-bit signature of the linear predictor, which is cubed 
in )2( rGF  to produce an r-bit output, which is nonlinear 
with respect to the output of the round.   
 

 
Figure 1. Robust architecture for one round of 

AES. 

For the robust architecture we have designed a linear 
predictor which can be used to generate a rL=32-bit 
signature.  The proposed linear predictor offers a 
relatively compact design, which allows for easy hardware 
sharing for encryption and decryption prediction.  The 
single predictor is designed so that it protects the 
encryptor/decryptor as well as key-expansion.  The 
complete design of the linear predictor can be found in the 
next section.   
 
5. Detailed design of the linear predictor 
 

The output of the linear predictor is linearly related to 
the output of the round of AES (see Figure 2).  
Specifically, each byte of the linear predictor’s output 

'( )L j  is equivalent to the componentwise XOR of four 
bytes of the output of a round (see Figure 3 for summary 
of the notations used): 

 In this method the function of each byte of '( )L j  no 
longer contains the MixColumns transformation [16].  As 
a result, the linear predictor is greatly simplified since it 
no longer needs to perform multiplications associated with 
the MixColumns/InvMixColumns (see [16]).  The details 
of the simplification are listed below. 
 

 
Figure 2. Relation of the output of the Linear 

Predictor L’(j) to the output of a round of AES, 
Out(i,j). 

 
 

 
 

Figure 3. Notations used. 

 
In the design presented in Figure 3 the complete linear 

predictor is actually the two components: Linear 
Predictor, and the Linear Compressor K. 
 The output of the linear predictor, '( )L j ,  is a 4-byte 
word which is linearly related to the output of one round 

(0,0) (0,1) (0, 2) (0,3)
(1,0) (1,1) (1, 2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3, 2) (3,3)

Out Out Out Out
Out Out Out Out
Out Out Out Out
Out Out Out Out⊕

'(0 ) '(1) '( 2 ) '(3)L L L L
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of AES.  The function of '( )L j  with respect to Out(i,j) 
can be written as: 
    3 3

0 0
'( ) ( , ) ( ( , ) ( , ))

i i
L j Out i j RK i j ED i j

= =
= = ⊕⊕ ⊕  (7) 

where  }3,2,1,0{∈j           

If 3

0
'( ) ( , )RK i

L j RK i j
=

=⊕  and 3

0
' ( ) ( , )ED i

L j ED i j
=

=⊕  

where }3,2,1,0{∈j , 
then )(')(')(' jLjLjL EDRK ⊕=  where }3,2,1,0{∈j  
    

Thus, for the AES standard the following expression 
can be obtained for encryption: 
 

'(0) {01} ( (0,0)) {03} ( (1,0))
               ( (2,0)) ( (3,0)) ( (0,0))

EDL Sub In Sub In
Sub In Sub In Sub In

= • ⊕ • ⊕
⊕ ⊕ ⊕

              {02} ( (1,0)) {03} ( (2,0))
              ( (3,0)) ( (0,0)) ( (1,0))

Sub In Sub In
Sub In Sub In Sub In

• ⊕ • ⊕
⊕ ⊕

             {02} ( (2,0)) {03} ( (3,0))Sub In Sub In⊕ • ⊕ • ⊕
              {03} ( (0,0)) ( (1,0))
               ( (2,0)) {02} ( (3,0))

Sub In Sub In
Sub In Sub In

• ⊕ ⊕
⊕ •

          ( (0,0)) ( (1,0)) ( (2,0))
              ( (3,0))

Sub In Sub In Sub In
Sub In

= ⊕ ⊕
⊕

 

 
where • is multiplication in )2( 8GF  and )),(( jiInSub  is 
the SubBytes transformation on the byte ),( jiIn  as 
defined in the AES standard [16]. 
 
Since: 

1( ( , )) ( ( , ) )Sub In i j M In i j c−= ⊕ ,  

where M=

































11111000
01111100
00111110
00011111
10001111
11000111
11100011
11110001

, c=

































0
1
1
0
0
0
1
1

   

and inverse is in GF(28). 
 
This further simplifies )0('EDL : 

))3,3()2,2()1,1()0,0(()0(' 1111 −−−− ⊕⊕⊕= InInInInMLED (8) 
 
Similarly, 

               
where Rcon[i] is the Round Constant used in Key 
Expansion as defined in [16].  
 

Combining (7), (8) and (9) results in: 
 

1 1 1 1

1 1 1 1

'(0) ( (0,0) (1,1) (2, 2) (3,3) )
           ( (0,3) (1,3) (2,3) (3,3) )
           (0,0) (1,0) (2,0) (3,0) [ ]

L M In In In In
M KI KI KI KI
KI KI KI KI Rcon i

− − − −

− − − −

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕

Extending the procedure to the rest of the bytes of 
encryption yields: 
 

))0,3()3,2()2,1()1,0(()1(' 1111 −−−− ⊕⊕⊕= InInInInMLED

))1,3()0,2()3,1()2,0(()2(' 1111 −−−− ⊕⊕⊕= InInInInMLED

))2,3()1,2()0,1()3,0(()3(' 1111 −−−− ⊕⊕⊕= InInInInMLED

)1,3()1,2()1,1()1,0()0(')1(' KIKIKIKILL RKRK ⊕⊕⊕⊕=
)2,3()2,2()2,1()2,0()1(')2(' KIKIKIKILL RKRK ⊕⊕⊕⊕=
)3,3()3,2()3,1()3,0()2(')3(' KIKIKIKILL RKRK ⊕⊕⊕⊕=  

 
Similarly for decryption: 
 

1 1

1 1

'(0) ( ( (0,0) )) ( ( (1,3) ))

               ( ( (2, 2) )) ( ( (3,1) ))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕
1 1

1 1

'(1) ( ( (0,1) )) ( ( (1,0) ))

              ( ( (2,3) )) ( ( (3, 2) ))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕
1 1

1 1

'(2) ( ( (0,2) )) ( ( (1,1) ))

               ( ( (2,0) )) ( ( (3,3) ))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕
1 1

1 1

'(3) ( ( (0,3) )) ( ( (1,2) ))

               ( ( (2,1) )) ( ( (3,0) ))
EDL Minv In c Minv In c

Minv In c Minv In c

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕
 

1 1

1 1

'(0) (( (0, 2) (0,3)) ( (1, 2) (1,3))

               ( (2,2) (2,3)) ( (3, 2) (3,3)) )
               [ ]

RKL M KI KI KI KI

KI KI KI KI
Rcon i

− −

− −

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

'(1) (0,0) (1,0) (2,0) (3,0) (0,1)
               (1,1) (2,1) (3,1)

RKL KI KI KI KI KI
KI KI KI

= ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕

'(2) (0,1) (1,1) (2,1) (3,1) (0,2)
                (1, 2) (2,2) (3,2)

RKL KI KI KI KI KI
KI KI KI

= ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕

'(3) (0,2) (1,2) (2,2) (3,2) (0,3)
               (1,3) (2,3) (3,3)

RKL KI KI KI KI KI
KI KI KI

= ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕

where Minv is the inverse in (2)GF  of the matrix M 
defined above. 
 

If the redundancy, and hence the size r of the cubic 
signature, is chosen such that it is smaller or equal than 
the output of the linear predictor rL (rL≤ 32), then the 
output of the linear predictor has to be first compressed 
before it is cubed.  In the proposed design this is the role 
of the Compressor K.  This compressor could be 
implementing multiplication over GF(2) by any (rL x r) 
matrix with rank r.   

The above design results in a linear predictor which 
protects the encryptor, decryptor and key expansion with  

1 1 1

1

' (0) ( (0,3) (1,3) (2,3)

                (3,3) ) (0,0) (1,0)
                (2,0) (3,0) [ ]

RKL M KI KI KI

KI KI KI
KI KI Rcon i

− − −

−

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕
⊕ ⊕

(9)
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TABLE 2. FPGA implementations of robust cubic AES 

 
only about a 50% hardware overhead in a FPGA 
implementation when compared to the unprotected design. 
 
6. FPGA implementations 
 

 We have implemented AES-128 (AES with 128-bit 
key) on a Xilinx XCV1000E FPGA using Xilinx 
Foundation 5.2 tools.  The design included 
encryption/decryption capability with dynamic key 
expansion for both encryption and decryption.  A simple 
control unit was implemented to control the whole circuit.   
That design was then protected by the proposed robust 
codes with different lengths of cubic signatures r. The 
required overheads are summarized in Table 2.  Table 2 
represents the relative size and speed of the circuit in post 
synthesis estimations only (not after place and route).   

From the cube size column in Table 2 it is evident that 
the complexity of the network computing cubic signatures 
does not have uniform )( 2rO  growth behavior (even 
though the sizes are presented in slices, the same 
characteristic would still be evident for the corresponding 
gate-counts).   In some instances it is absent such as in the 
cubes where r=24 and r=28.  In that case, the larger r 
corresponds to a smaller complexity of the cubic network.  
This abnormality is a result of the selection of primitive 
polynomials of degree r defining GF(2r ) for each r.  The 
size and the complexity of the cubic network are largely 
dependent on the characteristics of the primitive 
polynomial.  In general, less terms in the polynomial are 
and smaller the degree of the non-leading term the better.  
These polynomial characteristics also explain the large 
cost of the 32-bit cubic network.  The best primitive 
polynomial for the 32-bit case is relatively bad since it has 
5 terms and it has a large order term ( 22x ). 

Based on the results in Table II, we had chosen 
an r=28 for out test FPGA design.  We felt that the r=28  
 

 
case provided the best area to error protection 
compromise.  

 
Table 3. Relative sizes of components for robust 

cubic architectures. 
 

CONT
ROL 

AES 
ENC/DEC 

KEY 
EXPANSIO

N CORE 

LINEAR 
PREDIC

TOR 
28 BIT 
CUBE 

EDN 
WITH 28 

BIT 
CUBE 

SIZE 
(SLICES) 31 2,201 1,000 349 404 
RELATI
VE SIZE 

% 
0.7 % 55.3 % 25 % 8.8 % 10.2 % 

 
Table 3 represents the relative size of each component 

in the design where r=28. 
  

7. Simulation results 
 

The error coverage of the robust protection scheme 
with r=28 was simulated and compared to the error 
coverage of the corresponding linear protection scheme 
with the same redundancy.  The 28-bit signature was then 
calculated from the 128-bit random input.  In the robust 
simulation the signature was additionally cubed to 
produce the 156-bit extended output of the device (see 
Figure 4).  It was in  the extended 156-bit output that an 
error was injected.  The same random inputs and the same 
error patterns were injected into the linear and robust 
cubic architectures.  For each error pattern injected, five 
random inputs were simulated.   

The results for random uniformly distributed 
symmetrical error pattern (componentwise XOR) injection 
are presented in Table 4. 

 

SIZE OF THE 
CUBIC 

SIGNATURE  
r 

PRIMITIVE 
POLYNOMIAL 

CUBE 
SIZE 

(SLICES) 

TOTAL 
SIZE 

(SLICES) 

AREAD 
OVERHEA

D (%) 
FREQ. 
(MHz) 

THROUG
HPUT 
(Mb/s) 

SPEED 
OVERHEA

D (%) 

PROB. OF AN 
UNDETECTABLE 

ERROR * 
0 - - 2,253 0 19.67 228 -  

8 1348 ++++ xxxx  28 3,362 49 15.92 185 19 162−  

16 123516 ++++ xxxx  150 3,595 59 15.41 179 21 322−  

20 11720 ++xx  202 3,683 63 15.21 177 22 402−  

24 12724 ++++ xxxx  368 4,015 78 14.91 173 24 482−  

28 1328 ++xx  349 3,996 77 17.02 198 13 562−  

29 1229 ++xx  359 4,000 77 16.13 187 18 582−  

31 1331 ++xx  452 4,133 83 16.76 195 14 622−  

32 122232 ++++ xxxx  747 4,756 111 15.72 182 20 642−  
* Estimated, based on Table 1.  Assumes all errors at the extended output are equiprobable. 
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Figure 4 .  Bit flip error model  simulation test 

benches (a) linear; (b) robust cubic. 

 
Table 4. Results of the injection of symmetrical 

errors 
 

ERROR PATTERNS 
INJECTED 

ERRORS MISSED 
AFTER 5 

RANDOM INPUTS 
LINEAR 
PROTECTION 

29.7 billion 118 
ROBUST CUBIC 
PROTECTION 

29.7 billion 0 

  
Results in Table 4 support our calculations (see Table 

1).  As expected, for symmetrical errors the probability of 
an undetectable error in the linear error detection scheme 
is r−2 and much less in the robust case (calculated to be 

r22− , hence no missed errors). 
 Similarly, random unidirectional (1 to 0 only) errors 
were injected at the extended output.  The results of the 
simulation are presented in Table 5. 
 
Table 5. Results of the injection of unidirectional 

errors 
 

ERROR 
PATTERNS 
INJECTED 

ERRORS 
MISSED AFTER 

1 RANDOM 
INPUT 

ERRORS 
MISSED AFTER 

2 RANDOM 
INPUTS 

LINEAR 
PROTECTION 

12.2 billion 160 0 

ROBUST 
CUBIC 
PROTECTION 

12.2 billion 43 0 

 
 The manifestation of unidirectional errors is data 
dependant.  Thus, even the linear code exhibited some 
robust behavior.  The data dependant error detection 
property of the linear code in the case of unidirectional 
errors caused the linear protection to be more closely 
matched to the robust protection (Table 5). 
 Errors, which were missed by the linear architecture, 
were also considered.  In this simulation random 128-bit 
errors in information bits were generated.  The 28 
additional redundant error pattern bits were generated in 
such a way that the error pattern itself was a codeword of 
the corresponding (156,128) linear code.  The results of 
the simulation are presented in Table 6. 

The simulation results presented in Tables 4, 5 and 6 
support the estimations for robust codes presented in 
Section 2.  The simulation results support the claim that 
the number of undetectable errors for robust codes is 
considerably lower than that of the linear counterparts.    
 
 

Table 6. Protection against errors missed by 
linear architecture 

 
ERROR 

PATTERNS 
INJECTED 

ERRORS 
MISSED AFTER 

1 RANDOM 
INPUT 

ERRORS 
MISSED AFTER 

5 RANDOM 
INPUTS 

LINEAR 
PROTECTION 

28.1 
billion 28.1 billion 28.1 billion 

ROBUST 
CUBIC 
PROTECTION 

28.1 
billion 157 84 

 
8. Advantages of proposed robust 
architecture and future tasks 
 
 When attempting to protect a device against naturally 
occurring faults, assumptions and statistical analyses are 
made to determine the most probable errors.  With natural 
errors in devices and communication channels there are 
often well-defined classes of errors, which appear  the vast 
majority of the time.  Protection schemes are then focused 
on protecting against that class of errors.  However, 
statistical assumptions cannot, and should not be made for 
devices which can be subjected to an organized fault 
analysis attack.  An attacker could potentially inject any 
type or kind of fault.  An approach should be taken to 
minimize the number of total undetectable errors for such 
a device as to limit an attacker’s chances of success.   
 The probability of injecting an undetectable error into 
a device is an important criterion to characterize a 
resistance to DFA attacks.  The proposed robust codes can 
be used to extend the error coverage of existing linear 
codes.  They have a hardware cost, but their increased 
error coverage advantage outweighs those costs when it 
comes to DFA resistant AES applications such as smart 
cards.  As summarized in Table I, the number of 

(a)

(b)
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undetectable errors for the robust code is r2  times smaller 
than for the corresponding linear code.  When the 
redundancy is as large as in our example where r=28, the 
difference is enormous.  

In our robust design we had chosen an r=28.  With the 
introduction of the nonlinear cubic we reduced the 
fraction of undetectable errors from 282− to 562− without 
increasing the redundancy r of the original linear code and 
with relatively small hardware overhead (75% over 
unprotected AES).  To achieve the same probability of 

562− with linear codes only, the redundancy r would need 
to be extended to 56 bits.  A linear predictor which can 
generate r=56 bit signatures would result in duplication of 
hardware.  Thus, the robust nonlinear codes allow larger 
error coverage at a lower cost.  

It is become clear now that tamper-resistance must be 
integral and a countermeasure against one physical attack 
must not benefit another attack [20]. The AES algorithm 
does not contain arithmetic operations, only table lookups, 
bitwise “XOR”, and fixed byte rotation. Thus, AES is not 
particularly susceptible to leaking information during 
cryptographic operations through power and 
electromagnetic side-channels.  Of course, now that new 
more effective attacks (e.g. [8, 21]) have been developed 
it is become clear that the algorithm itself can’t be safe 
enough against all possible attacks and any reliable 
implementation must be done with reasonable 
countermeasures to side-channel  attacks. However, it is 
still very important to preserve good properties of AES 
related to resistance against power and timing analysis 
attacks when one is suggesting a countermeasure to fault 
injection based attacks. Error detection procedures should 
be based on the same finite field operations as the AES 
algorithm, the proposed robust protection satisfy this 
criterion. 

Our future research will combine protection against 
fault-injection with countermeasures against power and 
timing analysis attacks. There are two relatively new 
approaches that are fighting with the sources of data-
dependent variations of power, timing and erroneous 
behavior [22, 23]. The first makes power consumption 
almost data-independent by balancing the capacitive loads 
of differential nodes. The second uses self-timed circuits 
with dual-rail logic to resist power analysis and single-
point fault induction. These approaches (combined with 
methods proposed in [23] and [22]) seem to be very 
attractive countermeasure against power-analysis attacks. 
Self-timed circuitry because of absence of clocks makes 
glitch attack practically impossible. However, dual-rail 
encoding with alarm state from [23] is effective only for a 
limited class of induced errors (a single point fault 
induction, i.e. affecting only one wire). It is rather easy to 
imagine an attacker that can modify symmetrically both 
wires from dual-rail pair using e.g. attack from [17,18]. 
Such error induction will not be visible for the alarm 

generators from [23]. More developed error detection 
techniques, such as robust protection, need to be used. 
Other weaknesses of “classical” self-timed 
implementations [23] discovered in [18] could be 
effectively dealt with by asynchronous fine-grain 
multidimensional pipelined structures [24]. We are now 
starting development of robust asynchronous fine-grain 
pipelined implementations of AES using EDA tools under 
development in Boston University. 
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